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1. Introduction. This paper discusses the application of a simple quadrature 
fornmilla to the numerical solution of convolution integral eqjuations of Volterra 
type and to systems of simultaneous equations of the same type. The convergence 
of the processes is considered in somiie detail, proofs being given that at a fixed 
value of the independent variable the errors in the solution tend to zero as the 
step length tends to zero. 

2. Types of Equations Considered. The convolution initegral equation to be 
solved is 

( 1 ) ag(x) -i fW(x - t)g(4) dS = f(x) 

where 'a' is a constant, and f, W are given functions. The cases a = 0 (equation 
of the first kind) and a - 0 (equation of the second kind) are discussed. 

The corresponding system of equations can be written 

(2) Ag(x) - W(x -)g(t) dt-f ( x) 

where 

all ... aln 
A= , a matrix of constanits, 

l * ... an4j 

W11(Z) ... Wln(Z) fi(x) 1 (x) 

W(z) f . . ,f(x) g . ,g(x) = 
LWnl(z) Wnn(z) fn(X)) Ln(x) 

and the notation involving integration is interpreted in an obvious way. For this 
system of equations the rank of A is an important parameter. 

Equation (1) is well known, commonly occutrring in practical problems. The 
system of equations (2) does not appear to have been previously discussed, so an 
instance of a practical problem in which it arises is briefly described. 

In t-he linearized supersonic theory of [1i the system of e(qtuations (2) gives the 
pressure coefficientsf,(x) on n spanvise wing stations produced by a quasi-cylindri- 
cal shaped fuselage definied by n Foturier componenits gj(x). The W'Vj(z) are tabu- 
lated influence functions and A is of rank uinity. In [2] the problem of determining 
the fuselage shape required to produce prescribed pressuire coefficients on wsing 
st,ations is considered. Special attentioni is there devoted to the numerical soluition 
of (2) wvhen n equals 2 and the rakik of A is uinity. 
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3. The Use of the Trapezoidal Rule. In the method to be described, the equa- 
tions are solved by dividing the x-axis into equal small intervals, replacing the 
integrals in the equations by the corresponding approximate expressions given 
by the trapezoidal rule, and hence deriving a formula for the step-by-step solution. 

The solution of an integral equation by replacing the integral involved by a 
quadrature formula may be regarded as a standard method; see, for example, [31. 
However, adequate discussions of the convergence of such numerical methods 
appear to be lacking. This paper is concerned with the convergence of the method 
in the particular case of the application of the trapezoidal rule to equation (1), and 
with the extension of the method to the solution of the system of equations (2). 

The trapezoidal rule is the least accurate of quadrature formulas for a given 
step size, but it has the computational advantage of leading to a simple routine 
suitable for either desk or automatic computing, and furthermore is the most simple 
case to consider as regards convergence. 

Subject to assumed bounds on the derivatives of the functions involved, it has 
been found possible to establish a bound for the truncation error at a given value 
of the independent variable, and hence to prove the convergence of the process. 

The method of establishing a bound is not intended as a practical means of 
estimating errors. Practical ways of checking the accuracy of a numerical compu- 
tation of this type are either to repeat the solution using a different step length, 
or to evaluate the integrals in the equations by using the numerical solution and a 
more accurate quadrature formula than the trapezoidal rule. However, it is shown 
in Section 8 that for equationis of the first kind the numerical method described may 
in some cases also provide a convenient means of error analysis. 

4. Sources of Error in the Solution. Consider the truncation error in this type 
of numerical solution. In going from the mth step to the (m + 1)th, errors occur 
from two sources (neglecting rounding errors wvhich it is assumed throughout are 
kept smaller than the truncation errors): 

(i) due to replacing the integrals by a quadrature formula 
(ii) due to the fact that the values of the solution at the first m steps, all of 

which go into the quadrature formula for the evaluation of the solution at the 
(m + I)th step, have corresponding errors in them. 

In the following treatment the error at a fixed value of x is considered and the 
step length is taken as an integral fraction of x. As the step length decreases, the 
decrease in the correspondinig error produced in a single step is offset by the fact 
that the number of steps required to reach x increases inversely. An analogous 
error analysis for the numerical solution of an ordinary differential equation is 
given in [4]. The form of the bound obtained in this latter case is similar to that of 
the bound described in Section 6. 

S. The Single Integral Equation. In this section we consider the numerical 
solution of (1). If a ? 0 the step-by-step process is started by means of the equtation 

(3) ag(0) = f(0). 

If a = 0, (1) gives, on differentiation, 
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(4) - W(O)g(x) - W'(x g )(t) d =f '(x). 

If now W(O) # 0, the step-by-step process is started by means of the equation 

(5) -IV(0)g(O) - f'(0). 

If W(0) = 0, further differentiation (n + 1) times is required until wVe reach a 
derivative IV(n)(0) # 0. 

Equal intervals of length 6 are now taken along the x-axis. For the mth step we 
have 

m6 

ag(Mb) - W(rn6 t)g(t) d_ f(mb). 

Replacinig the integral by the corresponding trapezoidal rule approximation and 
rearranging: 

{a - W(O)} g*(m) =f (mr) 

(6) 1 - 
+ 6 4 W(m6)q(0) + T W([m - i6)g*(i3) 

where an asterisk denotes an approximate value (and wve use the convention 
throughout that , 0-1 ) 

Unless both a = 0 and W(O) = 0 we can successively evaluate 

g*(6) g*(26), 

If a = 0 and WV(0) = 0, then the equivalent equation (4) (or if necessary an equa- 
tioll obtained by further differentiation) is solved by the method described. The 
additionial errors involved in numerical differentiation (assuming the functions to 
have been given in tabulated form) are discussed in Section 8. 

The equation corresponding to (6) involving the true values is 

6 
{ a -- W(0)( g(m6) f(m6) 

(7) is1? 
+ 6 1t wF(ma)g(O) + TV[([m - i])g(ib)t + em,, 

where 
Its 

emi = WV(mb- Og(3 ) dt 

()-4JW(mb - [i - 116)q([i - 1a) + TV(m6- i3)g(i6)}. 

Writinig 

(9) E_- 9*(na) - g(ni5) 
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(i.e., Em is the error-after m steps) equations (6) and (7) give 

(10) a-2 W(O)} Em - a WVm - i]a)Ej - e,j. 

Now (see, for example, [5]) from (8) 

li2d d 
1 2 { dt [W(m3-{)g()]h=js -dt [W(nl3- 0gWh=(i_la} + 0(5) . 

If we assume that g and W have bounded derivatives up to the second, it follows 
that etn,i is 0(3). 

From equation (10) it follows by induction that a positive constant K can be 
found such that 

I Em 1 _ fm 

where 

(11) iia- Tr(- W0}f = K8 fi + mK83. 

Rewritinig (11) with (m + 1) for m and subtracting (11) from the result, 

{- a W(0)}fm+fl - - - W(0) + 8K fm = K83. 

The solution of this difference equation with iniitial condition from (11) is 

fa-2 W(0) + AK] 
(12) fm=-C1{ 8 3 

l 2 2 

where 

K83 + 82(a - 3 W(O)) 
Cl = 

a - 2 W(O) + 8K 2 

The two cases a $ 0 and a = 0 are discussed separately in the next two sections. 

6. Equation of the Second Kind (a # 0). In this case (12) provides the required 
bound. It is similar to the bound obtained for the error in the numerical solution of 
an ordinary differential equation in [4]. 

At a fixed value of x we consider a sequence of values of 8 such that n8 = x and 
m -) as 8 -O 0. Then for small a the term in (12) with index m is bounded and 
Cl = 0(82).Soforafixedvalueofx,fm = 0(a2),henceE,,, = 0(2). 

By considerinig the particular case W = constant = K > 0 and g' = constant 
12 it can be seen that the error Em can attain -its bound fin, and so, for given step 
size, it is possible for Em to increase with m like A L, where A > 1. 
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7. Equation of the First Kind (a = 0). We assume in this section that W(0) % 0, 
in which case equation (1), with a = 0, can be solved directly by means of the 
numerical formula (6). 

In this case equation (12) only provides a convergent bound for Em (at a fixed 
value of x) if 

(13) -< 2K . 
W (0) 

- 

In general K cannot be chosen to satisfy this condition. An example of an equation 
for which (12) does provide a bound is 

(14) f 9(t) dt = 2x3, 

in which W = constant = 1. In this case it is easily shown that the errors satisfy 
the equation 

1 rn-1 
(15) -2-Em= EEj+m62. 

On comparison with ( 11 ) it can be seen that we can choose K = 1 in order to satisfy 
the equality Em = fi . In this case (13) is satisfied, and as in Section 6 it follows 
that for a fixed value of x, Em = 0 (i2). A point of interest is that the errors E, 
in this example form an oscillating sequence, viz., -2S2, 0, -2S2, 0, . This 
behavior is typical of the errors when a = 0, as is shown by the followving analysis, 
which also shows that a convergent bound can always be found. 

Equation (10) in the present case reduces to 
rn-1 m 

(16) -2 W(0) Em = S E W([ m -i])Ei- E e,,. 

So 

(17) - W(0) fEm+l - Em I -W(3)Em + Jm 

where 
m-1 

Jm = i JWQ([m + 1 - ilb) - TV([m - i]S)}Ei 
i=i 

(18) m 
- emi+?,m+ - E (em+,i e -emSi) 

i=l 

Equation (17) can be rearranged to give 

(19) - 2T(O) {Em+j + Em} = {ITV(S) -JV(O) }Em + Jm. 

The right hanid side of (19) is in general smaller than the right hand side of (17). 
That is, Em+j + Em is in gelneral smaller than Em+l - Em , which implies that 
Em+j and Em, are in general of opposite sign. The Emn then forms an oscillating 
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sequence. A smaller bound than that given by equation (12), wvhich is obtained 
essentially from (10) by replacing the errors by their moduli, can therefore be 
obtained by relating Em+2 to Em. 

Replacing m by m + I in (19) and subtracting (19) as it stands gives an equation 
for Em+2 - Em. Assuming that g and W have bounded derivatives up to fourth 
order, it follows that the first and second differences of W are respectively of orders 
a and 32 and that the first and -second differences of em,i are respectively of orders 
64 and 65. It can then be showsn inductively that a positive constant K can be 
fouind such that 

(20) 1EmI hm 
where 

(21) hmn+2-hm -K 362Zhi + b(hm+l + hm) + m34 + 3, 

anid hi , h2 are chosen so that (20) holds for m = 1, 2. 
F rom ( 1 6) it can be seen that hi and h2 can be chosen so that 

(22) hi = 0(32), h2 = 0(5 2) 

and 

(23) hi<h2. 

Then 

(24) h2m_I < h2m, all m 

and lhence it may }Je verified by induction that if 

(25) I12m+2- 11m = K 22 H2i + H2m + H2m +H2m+2) + 2m64 + B3 

and 

(26) H2 = h2 

then 

(27) h22m < H2m all m > 1. 

From (25) there is obtained the difference equation 

(28) H2m+4(I - KS) - H12m+2 (2 + K(32) + H2m(1 -K62 + KS) = 2K64. 

The soltution of (28) is 

(29) H2m 3 -62 + Clpl' + C2p2' 

where pi, P2 are the tw-o values of 

l-1 K{ 1 )+K( 2 _r2Ej3 + K2a4 1/2} (30) 1 1 + 4 ~K(2 + K)a- K23 

and Cl, C2 are given by the initial conditions 

JpiCi + P.C2 = H2 + a2 
(31) 

12CI,+ P2 2C2 =H4 + 32 
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Now from (22) and (26), H2 = 0(82) and from (25), H4 = H2(1 + 0(5)). 
Also from (30), pi = 1 + 0(6), p2 = 1 + 0(a), p2- = 0(5). So from (31), 

C- = p2(H2 + 2) (H4 + 52) - 0(53) - Q(62) 

Pl (P2 -Pl) 0(5) 

Similarly C2 = 0(52). 

At a fixed value of x we consider a sequence of values of 5 such that 2mb = x, 
thus m -X00 as 5 -*0. Then for small 5 the terms in (29) with index m are bounded 
and C1, C2 are Q(52). So for ixed x, H2m is 0(b2) and from (27), (24) and (20) it 
follows that Em = 0( 2) 

8. Comparison of Methods. An equation of the first kind (a = 0) can be con- 
verted into an equation of the second kind by differentiation. For example, if 
W(O) $ 0 equation (4) results. It has already been shown in Sections 6 and 7 that 
for both types of equation the truncation error at a given value of the independent 
variable is Q(52). In this section the effects of rounding errors in the two cases are 
briefly considered and the problem of whether to convert, a first order equation 
into a second order one by differentiation before solvilng numerically is discussed. 

In the case a = 0 the numerical formula (6) becomes 

(32) g*(ms) = 11(0) {-f' ;.5) - W(m5)g(0) + E V([m - i]5)g*(iA)]}, 

In the first place, as was shown in Section 7, the truncation error in g*(mb) obtained 
by using the formula (32) is in general of opposite sign for two consecutive values 
of mn. Because of this the truncation error in the summation in the right hand side 
of (32) and hence in g*(mb) is smaller than it would be if the errors were of the 
same sign. To take advantage of this in the numerical computation, several digits 
must be retained beyond the point where the truncation error begins before round- 
ing off. This implies that TW must be knowvn to several more significant figures than 
would otherwise be necessary. It is also evident on comparison of (6) and (32) 
that in the latter formula more digits in f(mb) must be retained before rounding 
because of the 5 in the denominator. 

Suppose now that we are to solve aln equation of the first kind, viz. (1) with 
a = 0. The functions f and TV are supposed to have been given in tabular form and 
11(0) 5 0. Then the equation can be solved directly or it can be differentiated 
first, giving (4), an equation of the second kind. 

If the first method is adopted, then, as has been shown, the truLncation errors 
will in gelneral be of opposite sign and the rounding errors must be kept several 
digits smaller than the truncation error. If an automatic computer is being used 
it may not be iinconvenient to retain these extra significant figures. However, f and 
TW must be known to the extra degree of accuracy. Since the truncation errors are 
in general of opposite sign a simple smoothing process may be employed to improve 
the solution as follows. Denote the sequence of numbers 

g(0), g*(26), g*(46), ... 

by the symbols 

ge(O), g 9e(26), ge(45) X 
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and complete the sequence 

ge((), ge(s), ge(26), ... 

by interpolation. 
Similarly, from the sequence of lnumbers 

9*(3), g*(35), g*(5'6)2 ... 

the sequence 

go(a), go(23), go(33), ... 

is formed by using interpolation. 
The two sequences g8(mr), go(m8) theni give approximate bounds to the solution, 

and the smoothed solutioin is given by g,(m8) = [ge(MS) + go(mS)]. This procedure 
is illustrated in the numerical computation at the end of this section (Table 1). 

If the second method is adopted, that is, equation (4) is solved instead, the 
functions f and TV must first be differentiated numerically. Once this has been done 
the nutmerical solutioni can be rounded off to the same degree of accuracy as the 
truncation error and consequently fewrer significant figures need be retained. How- 
ever, extra significant figures in f and W now have to be used in the first place to 
obtaini f' alid TV' to the required degree of accuracy when using numerical differen- 
tiation. 

Each method appears to have its advantages, and the choice must depend on the 
data provided in a given problem, that is, on the spacing and number of significant 
figures in the given functions. 

We conclude this section by presenting the details of a simple numerical computa- 
tion in which the results givren by the two methods can be compared. 

The equation is 

J IV(x - )g(t) d f f(x) 

where IV(x) = cos x and f(x) = sin x. The analytical solution is g(t) = 1. The 
functions are given to 4 significant figures at intervals of 0.1 in x. The functions are 
differentiated numerically using a three-point formula except for the values at 
x = 0 where a four-point formula is used. The interpolation in the formation of the 
sequelices ge(m5), go(m8) is linear. 

TABLE 1 

W(x) f(x) ~~g* (x) W'(x) *x 
(=cosx) f(=xsn) (direct &'(X) go() g(X) numerical (3 -point (differentiated 

forulameuaton 

o 1.o00 0 1.000 1.0(X) 1.000 1.000 0 1.000 1.000 
0.1 0 9950 0.0999 1.003 1.000 1.003,, 1.002 -0.100 0.994 0.999 
0.2 0.9800 1 0.1988 1.000 1.000 1.000 1.000 -0.198 0.978 0.998 
0.3 1 0.9554 0.2954 0.997 1.003 0.997 1.000 -0.294 0.953 0.997 
0.4 0.9211 0.3894 1.006 1.006 0.998 1.002 -0.389 0.920 0.998 
0.5 0.8776 0.4795 0.998 1.004 0.998 1.001 -0.479 0.876 0.998 
0.6 0.825.3 0.5647 1.003 1.003 0.996 1.000 -0.564 0.823 0.997 
0.7 0.7649 0.6441 0.995 1.006 0.995 1.000 -0.642 0.763 0.997 
0.8 0.6968 0.7173 1.008 1.008 0.994 1.001 -0.716 0.696 0.998 
0. 9 0.6216 0.7833 0.994 1.008 0.994 1.001 -0.783 0.621 0.998 
1.0 1 0.5402 0.8415 1.009 1.009 
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9. The System of Integral Equations In this section we consider the numerical 
solution of the system (2). We use the expression r(A) to denote the rank of A. 

If r(A) = n, the step-by-step process is started by solving the algebra'ic set of 
equations 

(33) Ag(O) = f(O). 

If r(A) < n then n linear combinations of the equations (2) can be chosen to 
give another system of the same form, with a matrix in which n -r rows are identi- 
cally zero. If the n - r corresponding equations are differentiated, the rank of the 
matrix of the resulting set of n equations will in general have increased (in the same 
way that differentiation of the equation of the first kind, viz. (1) with a = 0, in 
general gives equation (4) of the second kind). We assume that repeated applica- 
tion of this process eventually leads to a system of the same form as (2) with a 
matrix of rank n (this corresponds to the assumption in Section 5: W< n) (0) # 0 
for some n). Setting x = 0 in this new system, we obtain a set of equations anal- 
ogous to (33) with which to start the step-by-step process. 

Equal intervals of length 5 are now taken along the x-axis. For the mth step we 
have 

Ag(mS) - W(mrS gg( ) d. = f(mS). 

Replacing the integral by the corresponding trapezoidal rule approximationi and 
rearranging: 

A- W(O) g*(m6) = f(mS) 

(34)(1r- 
+ a { W(mb)g(0) + E W(m -i]a)g*(i)} 

= Q(ma) (say), 

where an asterisk denotes an approximate value. 

Provided J A - W(O) I ? 0 we can successively evaluate 

g*(6), g*(2*), 

where at each step we solve a set of n equations (with coefficients independent of n). 
The above method is exactly analogous to that described for the single integral 

equation in Section 5. Only the outlines of proofs of convergence are given in this 
section, the details being analogous to those given for the single integral equation. 
The equation for the truncationi error corresponiding to (10) is 

(35) iA - W(0)t Em = W([m - i]6)E,- - em X 

where 

Em = g*(m) - g(mM) 
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and 
ri5 

e - J W(m6 -)g(Q) dE 

-9 {W(ma- [i- 1)g([i- 11) + W(ma - ia)g(i5) }. 

The case of r(A) = n corresponds to the case a $ 0 in Section 5 and a quantity 
fm can be found which is a bound for every component of Em. and is of the same form 
as (12) (with a - 0). So when r(A) = n, at a fixed value of x we h-ave E,. = 
O(g). In this case there is no condition on r(W(O)). 

If r(A) < n the analysis proceeds as in Section 7. In this case we assume, to 
avoid further complication, r(W(O)) = -n. The equation correspondiing to (17) is 

(36) {A W(O)} {Em+i -En) = 8W(5)Em + Jm 

where 
mn-i 

Jm = I w([m + 1 - i]a)- ([m -i]S)JEj 
(37) m 

- em+i,m+1- (em+i, - e.,t). 

Equation (36) can be rearranged to give 

(38) (A - W(0)) {Em+i + EmI = 2AEm + 8iiW(l) -W(0)IEm + Jm 

This is of the same formn as equation (19) except for the term 2AE.. It is now 
shown that when r(A) < n this term only contributes terms to the elements of 
Em+l + E. of the same order as the contribution of the remaining terms on the 
right hand side of (38). We assume that the elements of the last n - r rovvs of A 
are all zero (this can be arranged by taking linear combinations of the original 
equations). Then 

A - W(O) = (5t) 

and it is easily verified that each element of E,.+, + E,, consists of a linear combina- 
tion of the elements of the right hand side of (38), the coefficients of the first r 
elements being 0(1) and those of the last n - r elements being 0(h-'). But all the 
last n - r elements of AE. vanish, so the dominant terms in each element of E.+1 + 
Em are of the type 

(a) 0(6h){[W(5) - W(O)]Em + Jm,Ii 

where r + 1 S i 5 n, 

(b) 0(1) {AEm}t 

where 1 ? i ?r. 

The term (a) is analogous to the expression for E+,i + Em from equation (19). 
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From equation (3.5) 
5 m-1 m 

AE. = W(O)En + 5 W([m - i]6)E1 - e,,i. 

It can be seen that contributions from (a) and (b) are of the same order. 
The situation is the same as in Section 7, the elements of E.+1 + Em being in 

general smaller than those of Eml+ - Em, consecutive errors thus being in general 
of opposite sign. Replacing m by m + 1 in (38) and subtracting (38) as it stands 
gives an equation for Em+2 - Em. Assuming that the elements of g and w have 
bounded derivatives up to the fourth order it can be shown inductively that a 
positive constant K can be found such that 

I {E.mi I! hin, foralli 

where h. is given by (21), and (22), (23) hold. The analysis of Section 7 then 
shows that for a fixed value of x we have E. = 0(52). 

As indicated at the beginning of this section, if r(A) < n the system can in 
general be converted into an equivalent system with r = n by application of the 
operations of addition and differentiation. The problem of wvhether to convert a 
system with r < n into an equivalent system in this way, before solving numeri- 
cally, is exactly analogous to that discussed in Section 8, and will not be treated 
further here. The merits of the two methods are summarized in the conclusions. 

10. Conclusions. The numerical solution of a convolution integral equation of the 
Volterra type, equation (1), by using a simple quadrature formula has been dis- 
cussed. It is shown that if the step length is 5, the truncation error at a fixed value 
of the independent variable is 0(62) both for equations of the first and second kinds. 
However, the behavior of the truncation error is different in the two cases, being in 
general of opposite sign for consecutive steps in the case of an equation of the first 
kind. Since an equation of the first kind can in general be converted into one of the 
second kind by differentiation, it can either be solved numerically as it stands or 
differentiated first. The merits of the two methods appear to be as follows. In the 
direct method, both a smooth solution and approximate bounds for the truncation 
error can be obtained simultaneously. However, more significant figures have to be 
retained throughout before rounding off. If the equation is differentiated first, the 
given functions (which are assumed to be given in tabulated form) have to be 
differentiated numerically. In the actual step-by-step computation fewver significalnt 
figures need be retained. If the given functions are tabulated to sufficient significant 
figures to permit accurate derivatives to be obtained using numerical differentiation, 
the second method will probably be the more accurate. Otherwise, and if it is 
convenient to retain the extra significant figures throughout, the direct method 
has the advantages of requiring fewer steps (no numerical differenitiation) anid of 
providing approximate bounds for the truncation error. The method has been 
generalized to include the numerical solution of the system of integral equations 
(2). Aii instance of a practical problem arising from supersonic linearized theory in 
which this equation occurs has been described. The truncation error at a fixed value 
of the independent variable is again 0(62). The behavior of the truncation error is 
analogous to that in the solution of the single integral equation, the case r(A) < n 
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corresponding to an equation of the first kind, and the case r(A) = n corresponding 
to an equation of the second kind. 
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